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Brouwer and Bishop

▶ Luitzen Egbertus Jan Brouwer (1881-1966)

Dissertation 1907
Begründung der Mengenlehre unabhängig vom logischen Satz
vom ausgeschlossenen Dritten
Erster Teil: Allgemeine Mengenlehre 1918

Zweiter Teil: Theorie der Punktmengen, 1919.

Errett Bishop (1928- 1983)

Foundations of Constructive Analysis, 1967
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Bishop’s critique of Brouwer

[t]he movement Brouwer founded has long been dead,
killed partly by compromises of Brouwer’s disciples with the
viewpoint of idealism, partly by extraneous peculiarities of
Brouwer’s system which made it vague and even ridiculous
to practising mathematicians, but chiefly by the failure of
Brouwer and his followers to convince the mathematical
public that abandonment of the idealistic viewpoint would
not sterilize or cripple the development of mathematics.
(1967)
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Frameworks for Constructive Mathematics (in the 1970s)

▶ S. Feferman, Explicit Mathematics

▶ J. Myhill, Constructive Set Theory, CST.

▶ P. Martin-Löf, Intuitionistic Type Theory, MLTT.

▶ P. Aczel, Constructive Zermelo-Fraenkel Set Theory, CZF.

CZF is a simplification and extension of Myhill’s CST,
induced by MLTT.

▶ P. Aczel, introduced the concept of Frege Structures with the
intention of giving “a coherent context for the rigorous
development of Frege’s logical notion of set”.

“It’s a significant contribution to the theory of rules and
proofs in constructive mathematics” (Beeson)
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Intuitionistic Zermelo-Fraenkel set theory, IZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Full Separation

▶ Powerset

▶ Collection

(∀x ∈ a)∃y φ(x , y) ⊢ ∃b (∀x ∈ a) (∃y ∈ b) φ(x , y)

▶ Set Induction

(IND∈) ∀a (∀x ∈ a φ(x) → φ(a)) → ∀a φ(a),

▶ IZF has the same strength as ZF (Friedman).
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Myhill’s Constructive set theory 1975

Myhill wanted to single out the principles that undergird
Bishop’s conceptions of what sets and functions are, adding
that he wanted “these principles to be such as to make the
process of formalization completely trivial, as it is in the
classical case”.

CST is based on intuitionistic logic

Many sorted system: numbers, sets, functions

Axioms (simplified)

▶ Extensionality

▶ Pairing, Union, Infinity (or N is a set)

▶ Bounded Separation

▶ Exponentiation: A,B sets ⇒ AB set.

▶ Replacement

▶ Set Induction Scheme
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Three papers

▶ P. Aczel: The type theoretic interpretation of constructive set
theory. In: A. MacIntyre, L. Pacholski, J. Paris (eds.), Logic
Colloquium ‘77, North Holland, Amsterdam (1978) 55–66.

▶ P. Aczel: The type theoretic interpretation of constructive set
theory: Choice principles. In: A.S. Troelstra and D. van
Dalen, editors, The L.E.J. Brouwer Centenary Symposium,
North Holland, Amsterdam (1982) 1–40.

▶ P. Aczel: The type theoretic interpretation of constructive set
theory: Inductive definitions. In: R.B. Marcus et al. (eds.):
Logic, Methodology and Philosophy of Science VII (North
Holland, Amsterdam, 1986) 17–49.
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Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a)∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme



37

Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a)∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme



38

Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a)∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme



39

Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a)∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme



40

Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a) ∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme



41

Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a) ∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme



42

Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a) ∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme



43

Mathematics in CZF and Explosion

Mathematics can be formalized and developed in CZF in the usual
way, e.g., using class notation, defining functions as just special
relations.

Martin-Löf (1984) writes that:

“The reason that BA can be constructed as a set is that we
take the notion of function as primitive, instead of defining
a function as a set of ordered pairs or a binary relation
satisfying the usual existence and uniqueness conditions,
which would make it a category (like P(A)) instead of a
set.”

CZF is proof-theoretically a weak theory but adding classical logic
means explosion:

CZF+ Excluded Third = ZF
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Peter Aczel’s interpretation in MLTT: New Axioms
▶ Subset Collection

Given any sets A and B, there is a set C consisting of total
relations from A to B such that for any total relation R from
A to B, there exists S ∈ C with S ⊆ R.

▶ Presentation Axiom.

For any set A there exists a set B such that A is the surjective
image of B and the axiom of choice holds over B.

▶ The ΠΣ and ΠΣW Axioms of Choice.

▶ The Regular Extension Axiom.

Every set is a subset of a regular set.

A set C is said to be regular if it is transitive and inhabited
and for every total relation R from a set a ∈ C to C there
exists a set v ∈ C such that

∀x ∈ a ∃y ∈ v xRy ∧ ∀y ∈ v ∃x ∈ a xRy .
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A to B, there exists S ∈ C with S ⊆ R.

▶ Presentation Axiom.

For any set A there exists a set B such that A is the surjective
image of B and the axiom of choice holds over B.

▶ The ΠΣ and ΠΣW Axioms of Choice.

▶ The Regular Extension Axiom.
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The Type Theory MLTT1V

▶ In addition to the basic types, MLTT1V has one universe U
and the inductive type V of well-founded trees over U :

A : U f : A → V

sup(A, f ) : V

▶ The universe U is closed under the basic type constructors,
but not under W -types.

▶ V is a special case of the W -type.
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Set-theoretic elementhood ∈̇ and equality =̇ on V

Every α : V is of the form sup(A, f ).

Writing {f (i) | i : A} for sup(A, f ) and {g(j) | j : B} for
sup(B, g), define ∈̇ and =̇ on V inductively via

{f (i) | i : A} =̇ {g(j) | j : B} iff ∀i : A ∃j : B f (i)=̇g(j) ∧
∀j : B ∃i : A g(j)=̇f (i)

{f (i) | i : A} ∈̇ {g(j) | j : B} iff ∃j : B {f (i) | i : A} =̇ g(j)
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The strength of MLTT1V

Theorem The following theories have the Bachmann-Howard
ordinal,

ψ
Ω1
(ε

Ω1+1
)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) MLTT1V
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The strength of MLTT1V
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“Mathematical Statements”

,,It is true that in the mathematics of today the higher levels
of this hierarchy [described by ZFC] are practically never used.
It is safe to say that 99.9% of present-day mathematics is
contained in the first three levels of this hierarchy.” Gödel
(1951)
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Characterizing the interpretation in type theory (R. &
Tupailo 2005)

Theorem Let ψ be a mathematical statement and θ be a
generalized mathematical statement expressed in set theory. The
the following hold:

(i) CZF+ΠΣ-AC ⊢ ψ iff ψ is validated in MLTTe
1V.

(ii) CZF+ REA + ΠΣW -AC ⊢ θ iff θ is validated in MLTTe
1WV.

Theorem Let ψ be a mathematical statement and θ be a
generalized mathematical statement expressed in set theory. Then
the following hold:

(i) CZF+ΠΣ-AC ⊢ ψ iff
CZF+ΠΣ-AC + ΠΣ-PAx + RDC + BCAΠ + BCAI ⊢ ψ.

(ii) CZF+ΠΣ-AC ⊢ θ iff
CZF+REA+ΠΣW -AC+ΠΣW -PAx+RDC+BCAΠ+BCAI

proves θ.
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Borel, Baire, Lebesgues against the Axiom of Choice 1905

Borel: It seems to me that the objection against it is also
valid for every reasoning where one assumes an arbitrary
choice made an uncountable number of times, for such
reasoning does not belong in mathematics.
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Interpreting CZF in HoTT
Cesare Gallozzi (2018) investigated interpretations of CZF in
HoTT.
He looked at a family of interpretations

[[·]]k

for 2 ≤ k ≤ ∞, where in the interpretation the indexing types from
U have to be types of fixed homotopy level k.
k = ∞ means there is no restriction.

Theorem (RT) For mathematical statements ψ:

CZF+ΠΣ-AC ⊢ ψ iff MLTTe
1V ⊢ t : [[ψ]]∞ for some t.

Theorem (Gallozzi) For math. statements ψ and 2 ≤ k ≤ ∞:

CZF+ΠΣ-AC ⊢ ψ iff MLTTi
1V + Func. Ext. ⊢ t : [[ψ]]k some t.
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Many more interpretations

N. Gambino and P. Aczel The generalised type-theoretic
interpretation of constructive set theory (2006) JSL.

C. Gallozzi Homotopy type-theoretic interpretations of constructive
set theories (Thesis 2018)

H.R. Gylterud From multisets to sets in homotopy theory (2016)

H.R. Gylterud Multisets in type theory (2016)
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The set existence property SEP
A set theory T is said to have the set existence property if
whenever

T ⊢ ∃x ψ(x)

then there is a formula θ(x) such that

T ⊢ ∃!x [ψ(x) ∧ θ(x)].

Theorem (Friedman, Ščedrov 1985) IZF does not have the SEP.

Theorem (Swan 2014) CZF does not have the SEP.

Theorem (Aczel, Lloyd 2012) CZFRepl,Exp has the SEP.

Theorem (R. 2023) CZFExp has the SEP.

Theorem (R. and Tupailo 2005) CZF+ΠΣ-AC has the SEP for
formulae ∃xψ(x), where ψ(x) is a mathematical statement.
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The BOOK on

CONSTRUCTIVE SET THEORY
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CONSTRUCTIVE SET THEORY
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Peter Aczel’s book Non-Well-Founded Sets 1988



94

Mathematical Conceptualism à la Weaver

Nick Weaver proposed a semi-intuitionistic theory CM of
third-order arithmetic for axiomatizing what he calls mathematical
conceptualism.

The philosophical approach we adopt, mathematical con-
ceptualism, is a refinement of the predicativist philosophy
of Poincaré and Russell. The basic idea is that we ac-
cept as legitimate only those structures that can be con-
structed, but we allow constructions of transfinite length.
What makes this “conceptual” is that we are concerned
not only with those constructions that we can actually
physically carry out, but more broadly with all those that
are conceivable (perhaps supposing our universe had dif-
ferent properties than it does).

N. Weaver, Axiomatizing mathematical conceptualism in third
order arithmetic. arXiv:0905.1675v1, 31 pages, 2009.
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The system CM

1. CM has
▶ first order variables n,m, k , . . . (thought of as ranging over N)
▶ second order variables X ,Y ,Z , . . . (thought of as ranging over

sets of naturals)
▶ third order variables X,Y,Z, . . . (thought of as ranging over

sets of sets of naturals)
▶ Axioms

1.1 Number-theoretic axioms
1.2 Law of excluded middle for formulas with no second or third

order quantifiers.
1.3 Induction on naturals for all formulas.
1.4 Dependent choice at the second order level:

If ∀n∀X∃Y ψ(n,X ,Y ) then
∀X∃Z [Z(0) = X ∧ ∀nψ(n,Z(n),Z(n+1))].

1.5 Comprehension:
∀n(φ(n) ∨ ¬φ(n)) → ∃X∀n [n ∈ X ↔ φ(n)]
∀X (ϑ(X ) ∨ ¬ϑ(X )) → ∃Y∀X [X ∈ Y ↔ ϑ(X )]
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Developing mathematics in CM

It’s actually quite easy.

1. The reals are a third order object, inhabited by Dedekind cuts
of rationals.

2. A topological space is a set X together with a family of
subsets T of X such that (i) ∅ and X belong to T; (ii) the
union of any sequence of sets that belong to T belongs to T;
and (iii) the intersection of any finitely many sets that belong
to T belongs to T.

3. Weaver shows that lot of topology, measure theory and
functional analysis can be developed in CM. Core
mathematics can be straightforwardly implemented in CM.
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Principles of Omniscience

Limited Principle of Omniscience (LPO):

∀f ∈ 2N [∃n f (n) = 1 ∨ ∀n f (n) = 0].

Lesser Limited Principle of Omniscience (LLPO):

∀f ∈ 2N
(
∀n,m[f (n) = f (m) = 1 → n = m]

→ [∀n f (2n) = 0 ∨ ∀n f (2n + 1) = 0]
)
.
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Dummett “Thought and Reality” 2006

▶ “If there are no gaps in reality, that is no questions that have
no answers, then God’s logic will be classical.

Those many people who favour classical over intuitionistic
logic are therefore guilty of the presumption of reasoning as if
they were God.”

Bertrand Russell: “.... it’s just a medical condition ...”
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CM and Constructive Zermelo-Fraenkel set theory (CZF)

It is shown that it is unexpectedly easy to formalize a great deal of
modern functional analysis in CM.

The interesting connection between CZF+ LPO + RDC and CM
is the following.

Theorem. CM can be interpreted in CZF+ LPO + RDC.

Moreover, CZF+ LPO + RDC is proof-theoretically reducible to
CZF (R. 2014).
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The Anti-foundation Axiom
▶ A graph will consist of a set of nodes and a set of edges, each

edge being an ordered pair ⟨x , y⟩ of nodes. If ⟨x , y⟩ is an edge
then we will write x → y and say that y is a child of x .

▶ A path is a finite or infinite sequence x0 → x1 → x2 → . . . of
nodes x0, x1, x2, . . . linked by edges ⟨x0, x1⟩, ⟨x1, x2⟩, . . ..

▶ A pointed graph is a graph together with a distinguished node
x0 called its point. A pointed graph is accessible if for every
node x there is a path x0 → x1 → x2 → . . .→ x from the
point x0 to x .

▶ A decoration of a graph is an assignment d of a set to each
node of the graph in such a way that the elements of the set
assigned to a node are the sets assigned to the children of
that node, i.e.

d(a) = {d(x) : a → x}.
▶ A picture of a set is an accessible pointed graph (apg for

short) which has a decoration in which the set is assigned to
the point.
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The Anti-Foundation Axiom, AFA, is the statement that every
graph has a unique decoration.

Note that AFA has the consequence that every apg is a picture of
a unique set.

AFA is in effect the conjunction of two statements:

▶ AFA1: Every graph has at least one decoration.

▶ AFA2: Every graph has a most one decoration.

AFA1 is an existence statement whereas AFA2 is a strengthening
of the Extensionalty axiom of set theory. For example, taking the
graph G0 to consist of a single node x0 and one edge x0 → x0,
AFA1 ensures that this graph has a decoration
d0(x) = {d0(y) : x → y} = {d0(x)}, giving rise to a set b such
that b = {b}. However, if there is another set c satisfying
c = {c}, the Extensionalty axiom does not force b to be equal to
c , while AFA2 yields b = c . Thus, by AFA there is exactly one set
Ω such that Ω = {Ω}.
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Another example which demonstrates the extensionalizing effect of
AFA2 is provided by the graph G∞ which consists of the infinitely
many nodes xi and the edges xi → xi+1 for each i∈ω. According
to AFA1, G∞ has a decoration. As d∞(xi ) = Ω defines such a
decoration, AFA2 entails that this is the only one, whereby the
different graphs G0 and G∞ give rise to the same
non-well-founded set.
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The most important applications of AFA arise in connection with
solving systems of equations of sets. In a nutshell, this is
demonstrated by the following example. Let p and q be arbitrary
fixed sets. Suppose we need sets x , y , z such that

x = {x , y} (1)

y = {p, q, y , z}
z = {p, x , y}.

Here p and q are best viewed as atoms while x , y , z are the
indeterminates of the system. AFA ensures that the system (1)
has a unique solution. There is a powerful technique that can be
used to show that systems of equations of a certain type have
always unique solutions. In the terminology of Barwise, Moss
“Vicious Circles” this is called the solution lemma.
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The theory CZFA

CZFA is the theory CZF↾ plus AFA plus the axiom of transitive
closure.

ε0 ≤ |CZFA| ≤ φ20
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Largest Fixed Points

Theorem: (CZF↾+ RDC)

For every induction definition Φ, there is a largest fixed point
I ∗(Φ).
Indeed,

I ∗(Φ) =
⋃

{x | x set and x ⊆ ΓΦ(x)}

|CZF↾+ RDC| = φε00
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